4 research outputs found

    On the Borel Inseparability of Game Tree Languages

    Get PDF
    The game tree languages can be viewed as an automata-theoretic counterpart of parity games on graphs. They witness the strictness of the index hierarchy of alternating tree automata, as well as the fixed-point hierarchy over binary trees. We consider a game tree language of the first non-trivial level, where Eve can force that 0 repeats from some moment on, and its dual, where Adam can force that 1 repeats from some moment on. Both these sets (which amount to one up to an obvious renaming) are complete in the class of co-analytic sets. We show that they cannot be separated by any Borel set, hence {\em a fortiori} by any weakly definable set of trees. This settles a case left open by L.Santocanale and A.Arnold, who have thoroughly investigated the separation property within the μ\mu -calculus and the automata index hierarchies. They showed that separability fails in general for non-deterministic automata of type Σnμ\Sigma^{\mu}_{n} , starting from level n=3n=3, while our result settles the missing case n=2n=2

    Topological Complexity of Sets Defined by Automata and Formulas

    Get PDF
    In this thesis we consider languages of infinite words or trees defined by automata of various types or formulas of various logics. We ask about the highest possible position in the Borel or the projective hierarchy inhabited by sets defined in a given formalism. The answer to this question is called the topological complexity of the formalism.It is shown that the topological complexity of Monadic Second Order Logic extended with the unbounding quantifier (introduced by Bojańczyk to express some asymptotic properties) over ω-words is the whole projective hierarchy. We also give the exact topological complexities of related classes of languages recognized by nondeterministic ωB-, ωS- and ωBS-automata studied by Bojańczyk and Colcombet, and a lower complexity bound for an alternating variant of ωBS-automata.We present the series of results concerning bi-unambiguous languages of infinite trees, i.e. languages recognized by unambiguous parity tree automata whose complements are also recognized by unambiguous parity automata. We give an example of a bi-unambiguous tree language G that is analytic-complete. We present an operation σ on tree languages with the property that σ(L) is topologically harder than any language in the sigma-algebra generated by the languages continuously reducible to L. If the operation is applied to a bi-unambiguous language than the result is also bi-unambiguous. We then show that the application of the operation can be iterated to obtain harder and harder languages. We also define another operation that enables a limit step iteration. Using the operations we are able to construct a sequence of bi-unambiguous languages of increasing topological complexity, of length at least ω square.W niniejszej rozprawie rozważane są języki nieskończonych słów lub drzew definiowane poprzez automaty różnych typów lub formuły różnych logik. Pytamy o najwyższą możliwą pozycję w hierarchii borelowskiej lub rzutowej zajmowaną przez zbiory definiowane w danym formalizmie. Odpowiedź na to pytanie jest nazywana złożonością topologiczną formalizmu.Przedstawiony został dowód, że złożonością topologiczną Logiki Monadycznej Drugiego Rzędu rozszerzonej o kwantyfikator Unbounding (wprowadzony przez Bojańczyka w celu umożliwienia wyrażania własności asymptotycznych) na słowach nieskończonych jest cała hierarchia rzutowa. Obliczone zostały również złożoności topologiczne klas języków rozpoznawanych przez niedeterministyczne ωB-, ωS- i ωBS-automaty rozważane przez Bojańczyka i Colcombet'a, oraz zostało podane dolne ograniczenie złożoności wariantu alternującego ωBS-automatów.Zaprezentowane zostały wyniki dotyczące języków podwójnie jednoznacznych, tzn. języków rozpoznawanych przez jednoznaczne automaty parzystości na drzewach, których dopełnienia również są rozpoznawane przez jednoznaczne automaty parzystości. Podany został przykład podwójnie jednoznacznego języka drzew G, który jest analityczny-zupełny. Została wprowadzona operacja σ na językach drzew taka, że język σ(L) jest topologicznie bardziej złożony niż jakikolwiek język należący do sigma-algebry generowanej przez języki redukujące się w sposób ciągły do języka L. W wyniku zastosowania powyższej operacji do języka podwójnie jednoznacznego otrzymujemy język podwójnie jednoznaczny. Zostało pokazane, że kolejne iteracje aplikacji powyższej operacji dają coraz bardziej złożone języki. Została również wprowadzona druga operacja, która umożliwia krok graniczny iteracji. Używając obydwu powyższych operacji można skonstruować ciąg długości ω kwadrat złożony z języków podwójnie jednoznacznych o coraz większej złożoności

    On Unambiguous Regular Tree Languages of Index (0, 2)

    Get PDF
    Unambiguous automata are usually seen as a natural class of automata in-between deterministic and nondeterministic ones. We show that in case of infinite tree languages, the unambiguous ones are topologically far more complicated than the deterministic ones. We do so by providing operations that generate a family (A_{alpha})_{alpha < phi_2(0)} of unambiguous automata such that: 1. It respects the strict Wadge ordering: alpha < beta if and only if A_{alpha} <_W A_{beta}. This can be established without the help of any determinacy principle, simply by providing effective winning strategies in the underlying games. 2. Its length (phi_2(0)) is the first fixpoint of the ordinal function that itself enumerates all fixpoints of the ordinal exponentiation x |-> omega^x: an ordinal tremendously larger than (omega^(omega))^3 +3 which is the height of the Wadge hierarchy of deterministic tree languages as uncovered by Filip Murlak. 3. The priorities of all these parity automata only range from 0 to 2

    Unambiguous Tree Languages Are Topologically Harder Than Deterministic Ones

    No full text
    The paper gives an example of a tree language G that is recognised by an unambiguous parity automaton and is analytic-complete as a set in Cantor space. This already shows that the unambiguous languages are topologically more complex than the deterministic ones, that are all coanalytic. Using set G as a building block we construct an unambiguous language that is topologically harder than any countable boolean combination of analytic and coanalytic sets. In particular the language is harder than any set in difference hierarchy of analytic sets considered by O.Finkel and P.Simonnet in the context of nondeterministic automata
    corecore